An observation about the diagonal argument

The Diagonal Argument has the following form

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
- It is not the case that |N| = |R|.

SO!

- We are **not** proving that |R| > |N| by proving that there is some greater quantity of things – namely N + z.
- (That wouldn't work! N plus any finite number of things has the same cardinality as N. And even N plus |N|-many-things has the cardinality of N!)
- We are proving that |N| ≠ |R| by showing that there cannot be a 1-to-1 function on N and onto R: for any such possible function, Cantor will show you a contradiction.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
- It is not the case that |N| = |R|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
 - 1. Suppose there were a 1-to-1 function on N and onto R. Call this f.
- It is not the case that |N| = |R|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
 - 1. Suppose there were a 1-to-1 function on N and onto R. Call this f.
 - 2. Then, using f, we could construct z.
- It is not the case that |N| = |R|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
 - 1. Suppose there were a 1-to-1 function on N and onto R. Call this f.
 - 2. Then, using f, we could construct z.
 - 3. z is a real number (that is, $z \in R$).
- It is not the case that |N| = |R|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
 - 1. Suppose there were a 1-to-1 function on N and onto R. Call this f.
 - 2. Then, using f, we could construct z.
 - 3. z is a real number (that is, $z \in R$).
 - 4. z is in the range of f (by 1 and 3).
- It is not the case that |N| = |R|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
 - Suppose there were a 1-to-1 function on N and onto R. Call this f.
 - 2. Then, using f, we could construct z.
 - 3. z is a real number (that is, $z \in R$).
 - 4. z is in the range of f (by 1 and 3).
 - 5. z is not in the range of f (because for any $n \in N$, f(n) differs from z at least at the n^{th} decimal place).
- It is not the case that |N| = |R|.

Done!

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
 - Suppose there were a 1-to-1 function on N and onto R. Call this f.
 - 2. Then, using f, we could construct z.
 - 3. z is a real number (that is, $z \in R$).
 - 4. z is in the range of f (by 1 and 3).
 - 5. z is not in the range of f (because for any $n \in N$, f(n) differs from z at least at the n^{th} decimal place).
 - 6. (4 and 5 contradict, so we conclude that the source of our error is line 1.)
- It is not the case that |N| = |R|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
- It is not the case that |N| = |R|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
- It is not the case that |N| = |R|.
- Because N is a proper subset of R (N ⊂ R), there is a 1-to-1 function on N and into R (for example, the identity function). And so |N| ≤ |R|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
- It is not the case that |N| = |R|.
- Because N is a proper subset of R (N ⊂ R), there
 is a 1-to-1 function on N and into R (for example,
 the identity function). And so |N| ≤ |R|.
- If it is not the case that |N| = |R| and it is the case that |N| ≤ |R|, then |R| > |N|.

- If |N| = |R|, then there is a 1-to-1 function on N and onto R.
- There is no 1-to-1 function on N and onto R.
- It is not the case that |N| = |R|.
- Because N is a proper subset of R (that is, N ⊂ R), there is a 1-to-1 function on N and into R (for example, the identity function). And so |N| ≤ |R|.
- If it is not the case that |N| = |R| and it is the case that $|N| \le |R|$, then |R| > |N|.
- |R| > |N|