## Selected Axiomatic Systems

Let $\boldsymbol{P L}$ be our propositional logic (Axioms L1-L3 and MP).
Let $\boldsymbol{F O L}$ be our first order logic ( $\boldsymbol{P L}$, Axioms L4 and L5, and Generalization).

## Dedekind Style Axioms for Arithmetic

$\boldsymbol{F O L}$ with predicate F (identity) and functions $\mathrm{f}_{1}$ (successor), $\mathrm{f}_{2}$ (addition), and $\mathrm{f}_{3}$ (multiplication); and the following axioms:

A1: $\quad\left(x_{1}=x_{2} \rightarrow\left(x_{1}=x_{3} \rightarrow x_{2}=x_{3}\right)\right)$
A2: $\quad\left(\mathrm{x}_{1}=\mathrm{x}_{2} \rightarrow \mathrm{x}_{1}{ }^{\prime}=\mathrm{x}_{2}{ }^{\prime}\right)$
A3: $\quad \mathrm{f0}=\mathrm{x}_{1}{ }^{\prime}$
A4: $\quad\left(x_{1}{ }^{\prime}=x_{2}{ }^{\prime} \rightarrow x_{1}=x_{2}\right)$
A5: $\quad x_{1}+0=x_{1}$
A6: $\quad \mathbf{x}_{1}+\mathrm{x}_{2}{ }^{\prime}=\left(\mathbf{x}_{1}+\mathrm{x}_{2}\right)^{\prime}$
A7: $\quad x_{1} * 0=0$
A8: $\quad \mathbf{x}_{1} * \mathbf{x}_{2}{ }^{\prime}=\left(\mathbf{x}_{1} * \mathbf{x}_{2}\right)+\mathrm{x}_{1}$
A9: $\quad\left(\Phi_{(0)}-->\left(\forall \mathbf{x}\left(\Phi_{(\mathbf{x})}-->\Phi_{\left(\mathbf{x}^{\prime}\right)}\right)-->\forall \mathbf{x}\left(\Phi_{(\mathbf{x})}\right)\right)\right)$
Where " $x=y$ " means Fxy, identity; " $x$ " means $f_{1} x$, the successor of $x$; " $x+y$ " means $f_{2} x y$, addition; and " $x$ * $y$ " means $\mathrm{f}_{3} \mathrm{xy}$, multiplication.

We also add the rule, substitution of identicals (also sometimes called the "indiscernibility of identicals"). If $x=y$, then for any formula $\phi$ you can replace any $x$ in $\phi$ with $y$, or any $y$ in $\phi$ with $x$. Also, let's assume (this is derivable) commutivity of addition and of multiplication and of identity.

## Primitive Recursion

$\boldsymbol{F O L}$ and the following functions, called the initial functions:

$$
\begin{array}{ll}
\text { Zero: } & \mathbf{Z}(\mathbf{x})=\mathbf{0} \text { for all } \mathrm{x} \\
\text { Successor: } & \mathbf{N}(\mathbf{x})=\mathbf{x}+\mathbf{1} \text { for all } \mathrm{x} \\
\text { Projection: } & \mathbf{U}_{n}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right)=\mathbf{x}_{1} \text { for all } \mathrm{x}_{1} \ldots \mathrm{x}_{n}
\end{array}
$$

Rules are:

$$
\begin{array}{ll}
\text { Substitution: } & \mathbf{f}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right)=\mathbf{g}\left(\mathbf{h}_{1}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right) \ldots \mathbf{h}_{m}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right)\right) \\
\text { Recursion: } & \mathbf{f ( \mathbf { x } _ { 1 } \ldots \mathbf { x } _ { n } , \mathbf { 0 } ) = \mathbf { g } ( \mathbf { x } _ { 1 } \ldots \mathbf { x } _ { n } )} \\
& \mathbf{f}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{n}, \mathbf{y}+\mathbf{1}\right)=\mathbf{h}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{n}, \mathbf{y}, \mathbf{f}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{n}, \mathbf{y}\right)\right)
\end{array}
$$

A function is primitive recursive if it can be obtained from finite instances of substitution or recursion starting with the initial functions.

## Recursion

Axioms and rules for primitive recursion and the following rule:
$\mu$-Operator: $\quad \mathbf{f}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{\mathrm{n}}\right)=\mu \mathbf{y}\left(\mathbf{g}\left(\mathbf{x}_{1} \ldots \mathbf{x}_{\mathrm{n}}, \mathbf{y}\right)=\mathbf{0}\right)$
where there is at least one y such that $\mathrm{g}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)=0$ and $\mu \mathrm{y}\left(\mathrm{g}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)=0\right)$ is the least y such that $\mathrm{g}\left(\mathrm{x}_{1} \ldots \mathrm{X}_{\mathrm{n}}, \mathrm{y}\right)=0$.

A function is recursive if it can be obtained from finite instances of substitution or recursion or the $\mu$-Operator, starting with the initial functions.

## Standard Modal Propositional Logics

$M($ aka T)
$P L$ and:
M1: $\quad(\square(\phi \rightarrow \psi) \rightarrow(\square \phi \rightarrow \square \psi))$
M2: $\quad(\square \phi \rightarrow \phi)$

## Brouwer

$\boldsymbol{P L}$ and $\boldsymbol{M}$ and:

$$
\text { M3: } \quad(\phi \rightarrow \square \diamond \phi)
$$

## $\underline{\text { S4 }}$

$\boldsymbol{P L}$ and $\boldsymbol{M}$ and:

$$
\text { M4: } \quad(\square \phi \rightarrow \square \square \phi)
$$

Note corollary theorems of $\mathbf{S 4}$ :

$$
\begin{aligned}
& (\square \phi \leftrightarrow \square \square \phi) \\
& (\nabla \phi \leftrightarrow \Delta \diamond \phi)
\end{aligned}
$$

S5
$\boldsymbol{P L}$ and $\boldsymbol{M}$ and:

$$
\text { M5: } \quad(\diamond \phi \rightarrow \square \diamond \phi)
$$

Note corollary theorems of $\mathbf{S 5}$ :
$(\square \phi \leftrightarrow \Delta \square \phi)$
$(\Delta \phi \leftrightarrow \square \Delta \phi)$

