Selected Axiomatic Systems

Let *PL* be our propositional logic (Axioms L1-L3 and MP).

Let FOL be our first order logic (PL, Axioms L4 and L5, and Generalization).

Dedekind Style Axioms for Arithmetic

FOL with predicate F (identity) and functions f_1 (successor), f_2 (addition), and f_3 (multiplication); and the following axioms:

A1: $(\mathbf{x}_1 = \mathbf{x}_2 \rightarrow (\mathbf{x}_1 = \mathbf{x}_3 \rightarrow \mathbf{x}_2 = \mathbf{x}_3))$ A2: $(\mathbf{x}_1 = \mathbf{x}_2 \rightarrow \mathbf{x}_1' = \mathbf{x}_2')$ A3: $\neg 0 = x_1'$ A4: $(\mathbf{x}_1 = \mathbf{x}_2 \rightarrow \mathbf{x}_1 = \mathbf{x}_2)$ A5: $x_1 + 0 = x_1$ $\mathbf{x}_{1} + \mathbf{x}_{2}' = (\mathbf{x}_{1} + \mathbf{x}_{2})'$ A6: A7: $x_1 * 0 = 0$ A8: $\mathbf{X}_{1} * \mathbf{X}_{2}' = (\mathbf{X}_{1} * \mathbf{X}_{2}) + \mathbf{X}_{1}$ A9: $(\Phi_{(0)} \dashrightarrow (\forall x(\Phi_{(x)} \dashrightarrow \Phi_{(x')}) \dashrightarrow \forall x(\Phi_{(x)})))$

Where "x=y" means Fxy, identity; "x" means f_1x , the successor of x; "x+y" means f_2xy , addition; and " x^*y " means f_3xy , multiplication.

We also add the rule, substitution of identicals (also sometimes called the "indiscernibility of identicals"). If x=y, then for any formula ϕ you can replace any x in ϕ with y, or any y in ϕ with x. Also, let's assume (this is derivable) commutivity of addition and of multiplication and of identity.

Primitive Recursion

FOL and the following functions, called the *initial functions*:

Zero:	$\mathbf{Z}(\mathbf{x}) = 0$ for all x
Successor:	N(x) = x+1 for all x
Projection:	$\mathbf{U}_{i}^{n}(\mathbf{X}_{1}\mathbf{X}_{n}) = \mathbf{X}_{i} \text{ for all } \mathbf{X}_{1} \mathbf{X}_{n}$

Rules are:

Substitution: $f(x_1...x_n) = g(h_1(x_1...x_n) ... h_m(x_1...x_n))$ Recursion: $f(x_1...x_n, 0) = g(x_1...x_n)$ $f(x_1...x_n, y+1) = h(x_1...x_n, y, f(x_1...x_n, y))$

A function is *primitive recursive* if it can be obtained from finite instances of substitution or recursion starting with the initial functions.

Recursion

Axioms and rules for primitive recursion and the following rule:

 μ -Operator: $f(x_1...x_n) = \mu y(g(x_1...x_n, y) = 0)$

where there is at least one y such that $g(x_1...x_n, y) = 0$ and $\mu y(g(x_1...x_n, y) = 0)$ is the least y such that $g(x_1...x_n, y) = 0$.

A function is *recursive* if it can be obtained from finite instances of substitution or recursion or the μ -Operator, starting with the initial functions.

Standard Modal Propositional Logics

<u>M (aka T)</u>

PL and:

M1: $(\Box(\phi \rightarrow \psi) \rightarrow (\Box\phi \rightarrow \Box\psi))$ M2: $(\Box\phi \rightarrow \phi)$

Brouwer PL and M and:

M3: $(\phi \rightarrow \Box \Diamond \phi)$

<u>S4</u>

PL and *M* and:

M4: $(\Box \phi \rightarrow \Box \Box \phi)$

Note corollary theorems of S4:

 $(\Box \phi \leftrightarrow \Box \Box \phi)$ $(\Diamond \phi \leftrightarrow \Diamond \Diamond \phi)$

<u>S5</u> *PL* and *M* and:

M5: $(\Diamond \phi \rightarrow \Box \Diamond \phi)$

Note corollary theorems of **S5**:

$$(\Box \phi \leftrightarrow \Diamond \Box \phi)$$
$$(\Diamond \phi \leftrightarrow \Box \Diamond \phi)$$