Relations

A binary relation R on a set A is a set of ordered pairs of elements of $\mathrm{A} ; \mathrm{R} \subseteq \mathrm{A} \times \mathrm{A}$.
A binary relation R on a set A is called:

- Reflexive if: for every $a \in A,<a, a>\in R$;
- Symmetric if: for every $\mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{A},<\mathrm{a}, \mathrm{b}>\in \mathrm{R}$ only if $<\mathrm{b}, \mathrm{a}>\in \mathrm{R}$;
- Transitive if: for every $\mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{A}$ and $\mathrm{c} \in \mathrm{A}$, if $<\mathrm{a}, \mathrm{b}>\in \mathrm{R}$ and $<\mathrm{b}, \mathrm{c}>\in \mathrm{R}$ then $<\mathrm{a}, \mathrm{c}>\in \mathrm{R}$;
- Antisymmetric if: for every $\mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{A}$, if $<\mathrm{a}, \mathrm{b}>\in \mathrm{R}$ and $<\mathrm{b}, \mathrm{a}>\in \mathrm{R}$, then $\mathrm{a}=\mathrm{b}$.

A relation that is reflexive, symmetric, and transitive is called an equivalence relation.
A relation R on a set A that is reflexive, antisymmetric, and transitive, is called a (reflexive) partial order.

If a partial order R has no pairs $<\mathrm{a}, \mathrm{a}>$, for every $\mathrm{a} \in \mathrm{A}$, it is a strict partial order.
A partial order on a set A with the additional property that for every $a \in A$ and $b \in A$, either $a \leq b$ or $\mathrm{b} \leq \mathrm{a}$, is called a total order, or a linear order.

A total order on a set A is well-ordered if every non-empty subset of A has a least element.

Functions

A unary function from a set A and into a set B (these could be the same set) is a binary relation F such that for any $a \in A$ and $b \in B$ there is exactly one pair $<a, b>\in F$.

An n-ary function from a set A and into a set B (these could be the same set) is a n-ary relation F on A such that for every $a_{1} \in A \ldots a_{n} \in A$ there is exactly one $n+1$-tuple $<a_{1} \ldots a_{n}, b>\in F$.

