Relations

A binary relation R on a set A is a set of ordered pairs of elements of A; $R \subseteq A \times A$.

A binary relation R on a set A is called:

- *Reflexive* if: for every $a \in A$, $\langle a, a \rangle \in R$;
- *Symmetric* if: for every a∈A and b∈A, <a,b>∈R only if <b,a>∈R;
- *Transitive* if: for every $a \in A$ and $b \in A$ and $c \in A$, if $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$ then $\langle a, c \rangle \in R$;
- *Antisymmetric* if: for every $a \in A$ and $b \in A$, if $\langle a, b \rangle \in R$ and $\langle b, a \rangle \in R$, then a=b.

A relation that is reflexive, symmetric, and transitive is called an *equivalence relation*.

A relation R on a set A that is reflexive, antisymmetric, and transitive, is called a (reflexive) *partial order*.

If a partial order R has no pairs <a,a>, for every a∈A, it is a *strict partial order*.

A partial order on a set A with the additional property that for every $a \in A$ and $b \in A$, either $a \le b$ or $b \le a$, is called a *total order*, or a *linear order*.

A total order on a set A is well-ordered if every non-empty subset of A has a least element.

Functions

A unary *function* from a set A and into a set B (these could be the same set) is a binary relation F such that for any $a \in A$ and $b \in B$ there is exactly one pair $\langle a, b \rangle \in F$.

An n-ary *function* from a set A and into a set B (these could be the same set) is a n-ary relation F on A such that for every $a_1 \in A \dots a_n \in A$ there is exactly one n+1-tuple $\langle a_1 \dots a_n, b \rangle \in F$.